skip to Main Content

Analysis of Wireless Feature Sets for Commercial IoT Devices

This paper proposes an adaptive algorithm to maximize energy efficiency in cellular network considering a dynamic user clustering technique. First, a base station (BS) sleeping algorithm is designed, which minimizes the energy consumption to almost more than half. Then a Linear Radius User Clustering algorithm is modeled. Using feedback channel state information to the base station, the algorithm varies the mobile cell radius adaptively to minimize a total energy consumption of overall cellular network based on the threshold user density. The minimum distance where a Mobile Station can get a signal from the base station without a significant effect on human health can be located. Since the Base Station with modern scanner installed on its transmitter part can scan 390 times per second, the time scale to marginalize users from the coverage under threshold densities is in milliseconds. As a result, there is no significant effect on quality of services when the cell coverage is zoomed in/out periodically. Numerical results show that the proposed algorithm can considerably reduce energy consumption compared with the cases where a base station is always turned on with constant maximum transmit power.

Security Assessment of Blockchains in Heterogeneous IoT Networks

As Blockchain technology become more understood in recent years and its capability to solve enterprise business use cases become evident, technologist have been exploring Blockchain technology to solve use cases that have been daunting industries for years. Unlike existing technologies, one of the key features of blockchain technology is its unparalleled capability to provide, traceability, accountability and immutable records that can be accessed at any point in time. One application area of interest for blockchain is securing heterogenous networks. This paper explores the security challenges in a heterogonous network of IoT devices and whether blockchain can be a viable solution. Using an experimental approach, we explore the possibility of using blockchain technology to secure IoT devices, validate IoT device transactions, and establish a chain of trust to secure an IoT device mesh network, as well as investigate the plausibility of using immutable transactions for forensic analysis.

Energy Efficient Cellular Network User Clustering using Linear Radius Algorithm

This paper proposes an adaptive algorithm to maximize energy efficiency in cellular network considering a dynamic user clustering technique. First, a base station (BS) sleeping algorithm is designed, which minimizes the energy consumption to almost more than half. Then a Linear Radius User Clustering algorithm is modeled. Using feedback channel state information to the base station, the algorithm varies the mobile cell radius adaptively to minimize a total energy consumption of overall cellular network based on the threshold user density. The minimum distance where a Mobile Station can get a signal from the base station without a significant effect on human health can be located. Since the Base Station with modern scanner installed on its transmitter part can scan 390 times per second, the time scale to marginalize users from the coverage under threshold densities is in milliseconds. As a result, there is no significant effect on quality of services when the cell coverage is zoomed in/out periodically. Numerical results show that the proposed algorithm can considerably reduce energy consumption compared with the cases where a base station is always turned on with constant maximum transmit power.

Security Challenges of Processing-In-Memory Systems

Improved independent gate N-type FinFET fabrication and characterization

N-type independent gate FinFETs (IGFinFETs) have been fabricated and characterized. Previous published results for this structure highlighted processing deficiencies. Several process enhancements have improved device results beyond those previously reported. These process improvements are presented, and the resulting device is demonstrated. Device results for 2 micron channel length devices are shown. Six decades of drain current suppression and low gate leakage currents are achieved. Subthreshold slope of 200 mV/dec and a threshold voltage tuning range of 1.7 V are demonstrated. This device combines the behavioral characteristics of independent-double-gate MOSFETs with the processing advantages and integration of FinFETs.

Back To Top
×Close search
Search